home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Chip: 2001 Haziran
/
CHIP Haziran2001.iso
/
prog
/
haziran
/
19
/
setup.exe
/
data.z
/
p9080_lib.c
< prev
next >
Wrap
C/C++ Source or Header
|
2001-04-11
|
32KB
|
1,040 lines
////////////////////////////////////////////////////////////////
// File - P9080_LIB.C
//
// Library for 'WinDriver for PLX 9080' API.
// The basic idea is to get a handle for the board
// with P9080_Open() and use it in the rest of the program
// when calling WD functions. Call P9080_Close() when done.
//
////////////////////////////////////////////////////////////////
#include "p9080_lib.h"
#include "../../../include/windrvr_int_thread.h"
#include <stdio.h>
// this string is set to an error message, if one occurs
CHAR P9080_ErrorString[1024];
// internal data structures and enums
enum { P9080_DMA_CHANNEL_SHIFT = 0x14 }; // shift in address between channels 0 and 1 of DMA
typedef struct P9080_DMA_STRUCT {
WD_DMA dma;
WD_DMA dmaList;
P9080_DMA_CHANNEL dmaChannel;
} P9080_DMA_STRUCT;
enum { P9080_MODE_DESC = 0xF9000140 };
enum { P9080_MODE_DESC_BYTE = 0x00000000 };
enum { P9080_MODE_DESC_WORD = 0x00010001 };
enum { P9080_MODE_DESC_DWORD = 0x00030003 };
typedef struct
{
WD_INTERRUPT Int;
HANDLE hThread;
WD_TRANSFER Trans[2];
P9080_INT_HANDLER funcIntHandler;
} P9080_INTERRUPT;
typedef struct
{
DWORD dwLocalBase;
DWORD dwMask;
DWORD dwBytes;
DWORD dwAddr;
DWORD dwAddrDirect;
BOOL fIsMemory;
} P9080_ADDR_DESC;
typedef struct P9080_STRUCT
{
HANDLE hWD;
WD_CARD cardLock;
WD_PCI_SLOT pciSlot;
WD_CARD_REGISTER cardReg;
P9080_ADDR_DESC addrDesc[AD_PCI_BARS];
DWORD addrSpace;
BOOL fUseInt;
P9080_INTERRUPT Int;
BOOL fUseCS46EEPROM;
} P9080_STRUCT;
// internal function used by P9080_Open()
BOOL P9080_DetectCardElements(P9080_HANDLE hPlx);
// internal function used by P9080_Read... and P9080_Write... functions
void P9080_SetMode (P9080_HANDLE hPlx, P9080_MODE mode, DWORD dwLocalAddr);
DWORD P9080_CountCards (DWORD dwVendorID, DWORD dwDeviceID)
{
WD_VERSION ver;
WD_PCI_SCAN_CARDS pciScan;
HANDLE hWD = INVALID_HANDLE_VALUE;
P9080_ErrorString[0] = '\0';
hWD = WD_Open();
// check if handle valid & version OK
if (hWD==INVALID_HANDLE_VALUE)
{
sprintf( P9080_ErrorString, "Failed opening " WD_PROD_NAME " device\n");
return 0;
}
BZERO(ver);
WD_Version(hWD,&ver);
if (ver.dwVer<WD_VER)
{
sprintf( P9080_ErrorString, "Incorrect " WD_PROD_NAME " version\n");
WD_Close (hWD);
return 0;
}
BZERO(pciScan);
pciScan.searchId.dwVendorId = dwVendorID;
pciScan.searchId.dwDeviceId = dwDeviceID;
WD_PciScanCards (hWD, &pciScan);
WD_Close (hWD);
if (pciScan.dwCards==0)
sprintf( P9080_ErrorString, "no cards found\n");
return pciScan.dwCards;
}
BOOL P9080_Open (P9080_HANDLE *phPlx, DWORD dwVendorID, DWORD dwDeviceID, DWORD nCardNum, DWORD dwOptions)
{
P9080_HANDLE hPlx = (P9080_HANDLE) malloc (sizeof (P9080_STRUCT));
DWORD dwIntStatus;
WD_VERSION ver;
WD_PCI_SCAN_CARDS pciScan;
WD_PCI_CARD_INFO pciCardInfo;
*phPlx = NULL;
P9080_ErrorString[0] = '\0';
BZERO(*hPlx);
hPlx->hWD = WD_Open();
// check if handle valid & version OK
if (hPlx->hWD==INVALID_HANDLE_VALUE)
{
sprintf( P9080_ErrorString, "Failed opening " WD_PROD_NAME " device\n");
goto Exit;
}
BZERO(ver);
WD_Version(hPlx->hWD,&ver);
if (ver.dwVer<WD_VER)
{
sprintf( P9080_ErrorString, "Incorrect " WD_PROD_NAME " version\n");
goto Exit;
}
BZERO(pciScan);
pciScan.searchId.dwVendorId = dwVendorID;
pciScan.searchId.dwDeviceId = dwDeviceID;
WD_PciScanCards (hPlx->hWD, &pciScan);
if (pciScan.dwCards==0) // Found at least one card
{
sprintf( P9080_ErrorString, "Could not find PCI card\n");
goto Exit;
}
if (pciScan.dwCards<=nCardNum)
{
sprintf( P9080_ErrorString, "Card out of range of available cards\n");
goto Exit;
}
BZERO(pciCardInfo);
pciCardInfo.pciSlot = pciScan.cardSlot[nCardNum];
WD_PciGetCardInfo (hPlx->hWD, &pciCardInfo);
hPlx->pciSlot = pciCardInfo.pciSlot;
hPlx->cardReg.Card = pciCardInfo.Card;
hPlx->fUseInt = (dwOptions & P9080_OPEN_USE_INT) ? TRUE : FALSE;
if (!hPlx->fUseInt)
{
DWORD i;
// Remove interrupt item if not needed
for (i=0; i<hPlx->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hPlx->cardReg.Card.Item[i];
if (pItem->item==ITEM_INTERRUPT)
pItem->item = ITEM_NONE;
}
}
else
{
DWORD i;
// make interrupt resource sharable
for (i=0; i<hPlx->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hPlx->cardReg.Card.Item[i];
if (pItem->item==ITEM_INTERRUPT)
pItem->fNotSharable = FALSE;
}
}
hPlx->cardReg.fCheckLockOnly = FALSE;
WD_CardRegister (hPlx->hWD, &hPlx->cardReg);
if (hPlx->cardReg.hCard==0)
{
sprintf ( P9080_ErrorString, "Failed locking device\n");
goto Exit;
}
if (!P9080_DetectCardElements(hPlx))
{
sprintf ( P9080_ErrorString, "Card does not have all items expected for PLX 9080\n");
goto Exit;
}
// this enables target abort so it wont get stuck
dwIntStatus = P9080_ReadReg (hPlx, P9080_INTCSR);
P9080_WriteReg (hPlx, P9080_INTCSR, dwIntStatus | BIT12);
// check for EEPROM type
if( dwOptions & P9080_CS46_EEPROM )
{
hPlx->fUseCS46EEPROM = TRUE;
}
// Open finished OK
*phPlx = hPlx;
return TRUE;
Exit:
// Error durin Open
if (hPlx->cardReg.hCard)
WD_CardUnregister(hPlx->hWD, &hPlx->cardReg);
if (hPlx->hWD!=INVALID_HANDLE_VALUE)
WD_Close(hPlx->hWD);
free (hPlx);
return FALSE;
}
void P9080_GetPciSlot(P9080_HANDLE hPlx, WD_PCI_SLOT *pPciSlot)
{
*pPciSlot = hPlx->pciSlot;
}
DWORD P9080_ReadPCIReg(P9080_HANDLE hPlx, DWORD dwReg)
{
WD_PCI_CONFIG_DUMP pciCnf;
DWORD dwVal;
BZERO (pciCnf);
pciCnf.pciSlot = hPlx->pciSlot;
pciCnf.pBuffer = &dwVal;
pciCnf.dwOffset = dwReg;
pciCnf.dwBytes = 4;
pciCnf.fIsRead = TRUE;
WD_PciConfigDump(hPlx->hWD,&pciCnf);
return dwVal;
}
void P9080_WritePCIReg(P9080_HANDLE hPlx, DWORD dwReg, DWORD dwData)
{
WD_PCI_CONFIG_DUMP pciCnf;
BZERO (pciCnf);
pciCnf.pciSlot = hPlx->pciSlot;
pciCnf.pBuffer = &dwData;
pciCnf.dwOffset = dwReg;
pciCnf.dwBytes = 4;
pciCnf.fIsRead = FALSE;
WD_PciConfigDump(hPlx->hWD,&pciCnf);
}
BOOL P9080_DetectCardElements(P9080_HANDLE hPlx)
{
DWORD i;
DWORD ad_sp;
BZERO(hPlx->Int);
BZERO(hPlx->addrDesc);
for (i=0; i<hPlx->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hPlx->cardReg.Card.Item[i];
switch (pItem->item)
{
case ITEM_MEMORY:
case ITEM_IO:
{
DWORD dwBytes;
DWORD dwAddr;
DWORD dwPhysAddr;
DWORD dwAddrDirect = 0;
BOOL fIsMemory;
if (pItem->item==ITEM_MEMORY)
{
dwBytes = pItem->I.Mem.dwBytes;
dwAddr = pItem->I.Mem.dwTransAddr;
dwAddrDirect = pItem->I.Mem.dwUserDirectAddr;
dwPhysAddr = pItem->I.Mem.dwPhysicalAddr;
fIsMemory = TRUE;
}
else
{
dwBytes = pItem->I.IO.dwBytes;
dwAddr = pItem->I.IO.dwAddr;
dwPhysAddr = dwAddr & 0xffff;
fIsMemory = FALSE;
}
for (ad_sp=P9080_ADDR_REG; ad_sp<=P9080_ADDR_EPROM; ad_sp++)
{
DWORD dwPCIAddr;
DWORD dwPCIReg;
if (hPlx->addrDesc[ad_sp].dwAddr) continue;
if (ad_sp==P9080_ADDR_REG) dwPCIReg = PCI_BAR0;
else if (ad_sp<P9080_ADDR_EPROM)
dwPCIReg = PCI_BAR2 + 4*(ad_sp-P9080_ADDR_SPACE0);
else dwPCIReg = PCI_ERBAR;
dwPCIAddr = P9080_ReadPCIReg(hPlx, dwPCIReg);
if (dwPCIAddr & 1)
{
if (fIsMemory) continue;
dwPCIAddr &= ~0x3;
}
else
{
if (!fIsMemory) continue;
dwPCIAddr &= ~0xf;
}
if (dwPCIAddr==dwPhysAddr)
break;
}
if (ad_sp<=P9080_ADDR_EPROM)
{
DWORD j;
hPlx->addrDesc[ad_sp].dwBytes = dwBytes;
hPlx->addrDesc[ad_sp].dwAddr = dwAddr;
hPlx->addrDesc[ad_sp].dwAddrDirect = dwAddrDirect;
hPlx->addrDesc[ad_sp].fIsMemory = fIsMemory;
hPlx->addrDesc[ad_sp].dwMask = 0;
for (j=1; j<hPlx->addrDesc[ad_sp].dwBytes && j!=0x80000000; j *= 2)
{
hPlx->addrDesc[ad_sp].dwMask =
(hPlx->addrDesc[ad_sp].dwMask << 1) | 1;
}
}
}
break;
case ITEM_INTERRUPT:
if (hPlx->Int.Int.hInterrupt) return FALSE;
hPlx->Int.Int.hInterrupt = pItem->I.Int.hInterrupt;
break;
}
}
// check that all the items needed were found
// check if interrupt found
if (hPlx->fUseInt && !hPlx->Int.Int.hInterrupt)
{
return FALSE;
}
// check that the registers space was found
if (!P9080_IsAddrSpaceActive(hPlx, P9080_ADDR_REG))
//|| hPlx->addrDesc[P9080_ADDR_REG].dwBytes!=P9080_RANGE_REG)
return FALSE;
// use address space 0 for accessing local addresses
hPlx->addrSpace = P9080_ADDR_SPACE0;
// check that address space 0 was found
if (!P9080_IsAddrSpaceActive(hPlx, hPlx->addrSpace)) return FALSE;
return TRUE;
}
void P9080_Close(P9080_HANDLE hPlx)
{
// disable interrupts
if (P9080_IntIsEnabled(hPlx))
P9080_IntDisable(hPlx);
// unregister card
if (hPlx->cardReg.hCard)
WD_CardUnregister(hPlx->hWD, &hPlx->cardReg);
// close WinDriver
WD_Close(hPlx->hWD);
free (hPlx);
}
BOOL P9080_IsAddrSpaceActive(P9080_HANDLE hPlx, P9080_ADDR addrSpace)
{
return hPlx->addrDesc[addrSpace].dwAddr!=0;
}
DWORD P9080_ReadReg (P9080_HANDLE hPlx, DWORD dwReg)
{
return P9080_ReadDWord(hPlx, P9080_ADDR_REG, dwReg);
}
void P9080_WriteReg (P9080_HANDLE hPlx, DWORD dwReg, DWORD dwData)
{
P9080_WriteDWord(hPlx, P9080_ADDR_REG, dwReg, dwData);
}
BYTE P9080_ReadByte (P9080_HANDLE hPlx, P9080_ADDR addrSpace, DWORD dwOffset)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
BYTE *pByte = (BYTE *) dwAddr;
return *pByte;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = RP_BYTE;
trans.dwPort = dwAddr;
WD_Transfer (hPlx->hWD, &trans);
return trans.Data.Byte;
}
}
void P9080_WriteByte (P9080_HANDLE hPlx, P9080_ADDR addrSpace, DWORD dwOffset, BYTE data)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
BYTE *pByte = (BYTE *) dwAddr;
*pByte = data;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = WP_BYTE;
trans.dwPort = dwAddr;
trans.Data.Byte = data;
WD_Transfer (hPlx->hWD, &trans);
}
}
WORD P9080_ReadWord (P9080_HANDLE hPlx, P9080_ADDR addrSpace, DWORD dwOffset)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
WORD *pWord = (WORD *) dwAddr;
return *pWord;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = RP_WORD;
trans.dwPort = dwAddr;
WD_Transfer (hPlx->hWD, &trans);
return trans.Data.Word;
}
}
void P9080_WriteWord (P9080_HANDLE hPlx, P9080_ADDR addrSpace, DWORD dwOffset, WORD data)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
WORD *pWord = (WORD *) dwAddr;
*pWord = data;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = WP_WORD;
trans.dwPort = dwAddr;
trans.Data.Word = data;
WD_Transfer (hPlx->hWD, &trans);
}
}
DWORD P9080_ReadDWord (P9080_HANDLE hPlx, P9080_ADDR addrSpace, DWORD dwOffset)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
DWORD *pDword = (DWORD *) dwAddr;
return *pDword;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = RP_DWORD;
trans.dwPort = dwAddr;
WD_Transfer (hPlx->hWD, &trans);
return trans.Data.Dword;
}
}
void P9080_WriteDWord (P9080_HANDLE hPlx, P9080_ADDR addrSpace, DWORD dwOffset, DWORD data)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
DWORD *pDword = (DWORD *) dwAddr;
*pDword = data;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = WP_DWORD;
trans.dwPort = dwAddr;
trans.Data.Dword = data;
WD_Transfer (hPlx->hWD, &trans);
}
}
void P9080_ReadWriteBlock (P9080_HANDLE hPlx, DWORD dwOffset, PVOID buf,
DWORD dwBytes, BOOL fIsRead, P9080_ADDR addrSpace, P9080_MODE mode)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
if (fIsRead)
{
if (mode==P9080_MODE_BYTE) trans.cmdTrans = RM_SBYTE;
else if (mode==P9080_MODE_WORD) trans.cmdTrans = RM_SWORD;
else trans.cmdTrans = RM_SDWORD;
}
else
{
if (mode==P9080_MODE_BYTE) trans.cmdTrans = WM_SBYTE;
else if (mode==P9080_MODE_WORD) trans.cmdTrans = WM_SWORD;
else trans.cmdTrans = WM_SDWORD;
}
}
else
{
if (fIsRead)
{
if (mode==P9080_MODE_BYTE) trans.cmdTrans = RP_SBYTE;
else if (mode==P9080_MODE_WORD) trans.cmdTrans = RP_SWORD;
else trans.cmdTrans = RP_SDWORD;
}
else
{
if (mode==P9080_MODE_BYTE) trans.cmdTrans = WP_SBYTE;
else if (mode==P9080_MODE_WORD) trans.cmdTrans = WP_SWORD;
else trans.cmdTrans = WP_SDWORD;
}
}
trans.dwPort = dwAddr;
trans.fAutoinc = TRUE;
trans.dwBytes = dwBytes;
trans.dwOptions = 0;
trans.Data.pBuffer = buf;
WD_Transfer (hPlx->hWD, &trans);
}
void P9080_ReadBlock (P9080_HANDLE hPlx, DWORD dwOffset, PVOID buf,
DWORD dwBytes, P9080_ADDR addrSpace, P9080_MODE mode)
{
P9080_ReadWriteBlock (hPlx, dwOffset, buf, dwBytes, TRUE, addrSpace, mode);
}
void P9080_WriteBlock (P9080_HANDLE hPlx, DWORD dwOffset, PVOID buf,
DWORD dwBytes, P9080_ADDR addrSpace, P9080_MODE mode)
{
P9080_ReadWriteBlock (hPlx, dwOffset, buf, dwBytes, FALSE, addrSpace, mode);
}
void P9080_SetMode (P9080_HANDLE hPlx, P9080_MODE mode, DWORD dwLocalAddr)
{
hPlx->addrDesc[hPlx->addrSpace].dwLocalBase = dwLocalAddr & ~hPlx->addrDesc[hPlx->addrSpace].dwMask;
hPlx->addrDesc[hPlx->addrSpace].dwLocalBase |= BIT0;
P9080_WriteReg (hPlx, P9080_LAS0BA, hPlx->addrDesc[hPlx->addrSpace].dwLocalBase);
}
BYTE P9080_ReadByteLocal (P9080_HANDLE hPlx, DWORD dwLocalAddr)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
P9080_SetMode (hPlx, P9080_MODE_BYTE, dwLocalAddr);
return P9080_ReadByte(hPlx, hPlx->addrSpace, dwOffset);
}
void P9080_WriteByteLocal (P9080_HANDLE hPlx, DWORD dwLocalAddr, BYTE data)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
P9080_SetMode (hPlx, P9080_MODE_BYTE, dwLocalAddr);
P9080_WriteByte(hPlx, hPlx->addrSpace, dwOffset, data);
}
WORD P9080_ReadWordLocal (P9080_HANDLE hPlx, DWORD dwLocalAddr)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
P9080_SetMode (hPlx, P9080_MODE_WORD, dwLocalAddr);
return P9080_ReadWord(hPlx, hPlx->addrSpace, dwOffset);
}
void P9080_WriteWordLocal (P9080_HANDLE hPlx, DWORD dwLocalAddr, WORD data)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
P9080_SetMode (hPlx, P9080_MODE_WORD, dwLocalAddr);
P9080_WriteWord(hPlx, hPlx->addrSpace, dwOffset, data);
}
DWORD P9080_ReadDWordLocal (P9080_HANDLE hPlx, DWORD dwLocalAddr)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
P9080_SetMode (hPlx, P9080_MODE_DWORD, dwLocalAddr);
return P9080_ReadDWord(hPlx, hPlx->addrSpace, dwOffset);
}
void P9080_WriteDWordLocal (P9080_HANDLE hPlx, DWORD dwLocalAddr, DWORD data)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
P9080_SetMode (hPlx, P9080_MODE_DWORD, dwLocalAddr);
P9080_WriteDWord(hPlx, hPlx->addrSpace, dwOffset, data);
}
void P9080_ReadWriteBlockLocal (P9080_HANDLE hPlx, DWORD dwLocalAddr,
PVOID buf, DWORD dwBytes, BOOL fIsRead, P9080_MODE mode)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
P9080_SetMode (hPlx, mode, dwLocalAddr);
P9080_ReadWriteBlock(hPlx, dwOffset, buf, dwBytes, fIsRead, hPlx->addrSpace, mode);
}
void P9080_ReadBlockLocal (P9080_HANDLE hPlx, DWORD dwLocalAddr, PVOID buf,
DWORD dwBytes, P9080_MODE mode)
{
P9080_ReadWriteBlockLocal (hPlx, dwLocalAddr, buf, dwBytes, TRUE, mode);
}
void P9080_WriteBlockLocal (P9080_HANDLE hPlx, DWORD dwLocalAddr, PVOID buf,
DWORD dwBytes, P9080_MODE mode)
{
P9080_ReadWriteBlockLocal (hPlx, dwLocalAddr, buf, dwBytes, FALSE, mode);
}
BOOL P9080_IntIsEnabled (P9080_HANDLE hPlx)
{
if (!hPlx->fUseInt) return FALSE;
if (!hPlx->Int.hThread) return FALSE;
return TRUE;
}
VOID P9080_IntHandler (PVOID pData)
{
P9080_HANDLE hPlx = (P9080_HANDLE) pData;
P9080_INT_RESULT intResult;
intResult.dwCounter = hPlx->Int.Int.dwCounter;
intResult.dwLost = hPlx->Int.Int.dwLost;
intResult.fStopped = hPlx->Int.Int.fStopped;
intResult.dwStatusReg = hPlx->Int.Trans[0].Data.Dword;
hPlx->Int.funcIntHandler(hPlx, &intResult);
}
BOOL P9080_IntEnable (P9080_HANDLE hPlx, P9080_INT_HANDLER funcIntHandler)
{
DWORD dwIntStatus;
DWORD dwAddr;
if (!hPlx->fUseInt) return FALSE;
// check if interrupt is already enabled
if (hPlx->Int.hThread) return FALSE;
dwIntStatus = P9080_ReadReg (hPlx, P9080_INTCSR);
BZERO(hPlx->Int.Trans);
// This is a samlpe of handling interrupts:
// Two transfer commands are issued. First the value of the interrrupt control/status
// register is read. Then, a value of ZERO is written.
// This will cancel interrupts after the first interrupt occurs.
// When using interrupts, this section will have to change:
// you must put transfer commands to CANCEL the source of the interrupt, otherwise, the
// PC will hang when an interrupt occurs!
dwAddr = hPlx->addrDesc[P9080_ADDR_REG].dwAddr + P9080_INTCSR;
hPlx->Int.Trans[0].cmdTrans = hPlx->addrDesc[P9080_ADDR_REG].fIsMemory ? RM_DWORD : RP_DWORD;
hPlx->Int.Trans[0].dwPort = dwAddr;
hPlx->Int.Trans[1].cmdTrans = hPlx->addrDesc[P9080_ADDR_REG].fIsMemory ? WM_DWORD : WP_DWORD;
hPlx->Int.Trans[1].dwPort = dwAddr;
hPlx->Int.Trans[1].Data.Dword = dwIntStatus & ~(BIT8|BIT10); // put here the data to write to the control register
hPlx->Int.Int.dwCmds = 2;
hPlx->Int.Int.Cmd = hPlx->Int.Trans;
hPlx->Int.Int.dwOptions |= INTERRUPT_CMD_COPY;
// this calls WD_IntEnable() and creates an interrupt handler thread
hPlx->Int.funcIntHandler = funcIntHandler;
if (!InterruptThreadEnable(&hPlx->Int.hThread, hPlx->hWD, &hPlx->Int.Int, P9080_IntHandler, (PVOID) hPlx))
return FALSE;
// this physically enables interrupts
P9080_WriteReg (hPlx, P9080_INTCSR, dwIntStatus | (BIT8|BIT10));
return TRUE;
}
void P9080_IntDisable (P9080_HANDLE hPlx)
{
DWORD dwIntStatus;
if (!hPlx->fUseInt) return;
if (!hPlx->Int.hThread) return;
// this disables interrupts
dwIntStatus = P9080_ReadReg (hPlx, P9080_INTCSR);
P9080_WriteReg (hPlx, P9080_INTCSR, dwIntStatus & ~(BIT8|BIT10));
// this calls WD_IntDisable()
InterruptThreadDisable(hPlx->Int.hThread);
hPlx->Int.hThread = NULL;
}
P9080_DMA_HANDLE P9080_DMAOpen (P9080_HANDLE hPlx, DWORD dwLocalAddr, PVOID buf,
DWORD dwBytes, BOOL fIsRead, P9080_MODE mode, P9080_DMA_CHANNEL dmaChannel)
{
DWORD dwDMAMODE, dwDMADPR, dwDMALADR;
DWORD dwChannelShift = (dmaChannel==P9080_DMA_CHANNEL_0) ? 0 : P9080_DMA_CHANNEL_SHIFT;
BOOL fAutoinc = TRUE;
P9080_DMA_HANDLE hDma;
hDma = malloc (sizeof(P9080_DMA_STRUCT));
if (hDma==NULL)
{
sprintf( P9080_ErrorString, "Failed allocating memory for dma handle!\n");
goto Exit;
}
BZERO (*hDma);
hDma->dmaChannel = dmaChannel;
hDma->dma.dwBytes = dwBytes;
hDma->dma.pUserAddr = buf;
hDma->dma.dwOptions = 0;
WD_DMALock (hPlx->hWD, &hDma->dma);
if (!hDma->dma.hDma)
{
sprintf( P9080_ErrorString, "Failed locking the buffer!\n");
goto Exit;
}
if (hDma->dma.dwPages==1)
{
//dma of one page ==> direct dma
dwDMAMODE =
(fAutoinc ? 0 : BIT11)
| BIT6
| (mode==P9080_MODE_BYTE ? 0 : mode==P9080_MODE_WORD ? BIT0 : (BIT1 | BIT0));
dwDMADPR = BIT0 | (fIsRead ? BIT3 : 0);
dwDMALADR = dwLocalAddr;
P9080_WriteReg (hPlx, P9080_DMAMODE + dwChannelShift, dwDMAMODE);
P9080_WriteReg (hPlx, P9080_DMAPADR + dwChannelShift, (DWORD) hDma->dma.Page[0].pPhysicalAddr);
P9080_WriteReg (hPlx, P9080_DMALADR + dwChannelShift, dwDMALADR);
P9080_WriteReg (hPlx, P9080_DMASIZ + dwChannelShift, hDma->dma.Page[0].dwBytes);
P9080_WriteReg (hPlx, P9080_DMADPR + dwChannelShift, dwDMADPR);
}
else
{
DWORD dwAlignShift, dwPageNumber, dwMemoryCopied;
typedef struct {
DWORD dwPADR;
DWORD dwLADR;
DWORD dwSIZ;
DWORD dwDPR;
} DMA_LIST;
DMA_LIST *pList;
//dma of more then one page ==> chain dma
hDma->dmaList.dwBytes = hDma->dma.dwPages * sizeof(DMA_LIST) + 0x10; // includes extra 0x10 bytes for quadword alignment
hDma->dmaList.pUserAddr = NULL;
hDma->dmaList.dwOptions = DMA_KERNEL_BUFFER_ALLOC;
WD_DMALock (hPlx->hWD, &hDma->dmaList);
if (!hDma->dmaList.hDma)
{
sprintf (P9080_ErrorString, "Failed locking the chain buffer!\n");
goto Exit;
}
//setting chain of dma pages in the memory
dwMemoryCopied = 0;
dwAlignShift = 0x10 - (DWORD) hDma->dmaList.pUserAddr & 0xf;
// verifcation that bits 0-3 are zero (quadword aligned)
pList = (DMA_LIST *) ((DWORD) hDma->dmaList.pUserAddr + dwAlignShift);
for (dwPageNumber=0; dwPageNumber<hDma->dma.dwPages; dwPageNumber++)
{
pList[dwPageNumber].dwPADR = (DWORD) hDma->dma.Page[dwPageNumber].pPhysicalAddr;
pList[dwPageNumber].dwLADR = dwLocalAddr + (fAutoinc ? dwMemoryCopied : 0);
pList[dwPageNumber].dwSIZ = hDma->dma.Page[dwPageNumber].dwBytes;
pList[dwPageNumber].dwDPR =
((DWORD) hDma->dmaList.Page[0].pPhysicalAddr + dwAlignShift + sizeof(DMA_LIST)*(dwPageNumber+1))
| BIT0 | (fIsRead ? BIT3 : 0);
dwMemoryCopied += hDma->dma.Page[dwPageNumber].dwBytes;
}
pList[dwPageNumber - 1].dwDPR |= BIT1; // mark end of chain
dwDMAMODE = (fAutoinc ? 0 : BIT11)
| BIT6
| BIT9 // chain transfer
| (mode==P9080_MODE_BYTE ? 0 : mode==P9080_MODE_WORD ? BIT0 : (BIT1 | BIT0));
dwDMADPR = ((DWORD)hDma->dmaList.Page[0].pPhysicalAddr + dwAlignShift) | BIT0;
// starting the dma
P9080_WriteReg (hPlx, P9080_DMAMODE + dwChannelShift, dwDMAMODE);
P9080_WriteReg (hPlx, P9080_DMADPR + dwChannelShift, dwDMADPR);
}
return hDma;
Exit:
if (hDma!=NULL)
P9080_DMAClose(hPlx,hDma);
return NULL;
}
void P9080_DMAClose (P9080_HANDLE hPlx, P9080_DMA_HANDLE hDma)
{
if (hDma->dma.hDma)
WD_DMAUnlock(hPlx->hWD, &hDma->dma);
if (hDma->dmaList.hDma)
WD_DMAUnlock(hPlx->hWD, &hDma->dmaList);
free (hDma);
}
BOOL P9080_DMAIsDone (P9080_HANDLE hPlx, P9080_DMA_HANDLE hDma)
{
return (P9080_ReadByte(hPlx, P9080_ADDR_REG, P9080_DMACSR +
hDma->dmaChannel) & BIT4) == BIT4;
}
void P9080_DMAStart (P9080_HANDLE hPlx, P9080_DMA_HANDLE hDma, BOOL fBlocking)
{
P9080_WriteByte(hPlx, P9080_ADDR_REG, P9080_DMACSR + hDma->dmaChannel,
BIT0 | BIT1);
//Busy wait for plx to finish transfer
if (fBlocking)
while (!P9080_DMAIsDone(hPlx, hDma));
}
BOOL P9080_DMAReadWriteBlock (P9080_HANDLE hPlx, DWORD dwLocalAddr, PVOID buf,
DWORD dwBytes, BOOL fIsRead, P9080_MODE mode, P9080_DMA_CHANNEL dmaChannel)
{
P9080_DMA_HANDLE hDma;
if (dwBytes==0)
return TRUE;
hDma = P9080_DMAOpen(hPlx, dwLocalAddr, buf, dwBytes, fIsRead, mode, dmaChannel);
if (!hDma)
return FALSE;
P9080_DMAStart(hPlx, hDma, TRUE);
P9080_DMAClose(hPlx, hDma);
return TRUE;
}
void P9080_EEPROMDelay(P9080_HANDLE hPlx)
{
WD_SLEEP sleep;
BZERO (sleep);
sleep.dwMicroSeconds = 500;
WD_Sleep( hPlx->hWD, &sleep);
}
void P9080_EEPROMChipSelect(P9080_HANDLE hPlx, BOOL fSelect)
{
DWORD dwCNTRL = P9080_ReadReg(hPlx, P9080_CNTRL);
if (fSelect)
dwCNTRL |= BIT25;
else
dwCNTRL &= ~BIT25;
P9080_WriteReg(hPlx, P9080_CNTRL, dwCNTRL);
P9080_EEPROMDelay(hPlx);
}
BOOL P9080_EEPROMValid(P9080_HANDLE hPlx)
{
return (P9080_ReadReg(hPlx, P9080_CNTRL) & BIT28)==BIT28;
}
void P9080_EEPROMWriteBit(P9080_HANDLE hPlx, BOOL fBit)
{
DWORD dwCNTRL = P9080_ReadReg(hPlx, P9080_CNTRL);
dwCNTRL &= ~BIT24;
if (fBit) // data
dwCNTRL |= BIT26;
else
dwCNTRL &= ~BIT26;
P9080_WriteReg( hPlx, P9080_CNTRL, dwCNTRL);
P9080_EEPROMDelay(hPlx);
dwCNTRL |= BIT24; // clock
P9080_WriteReg( hPlx, P9080_CNTRL, dwCNTRL);
P9080_EEPROMDelay(hPlx);
dwCNTRL &= ~BIT24;
P9080_WriteReg( hPlx, P9080_CNTRL, dwCNTRL);
P9080_EEPROMDelay(hPlx);
}
BOOL P9080_EEPROMReadBit(P9080_HANDLE hPlx)
{
BOOL fRet;
DWORD dwCNTRL = P9080_ReadReg(hPlx, P9080_CNTRL);
dwCNTRL &= ~BIT24;
P9080_WriteReg( hPlx, P9080_CNTRL, dwCNTRL);
P9080_EEPROMDelay(hPlx);
dwCNTRL |= BIT24; // clock
P9080_WriteReg( hPlx, P9080_CNTRL, dwCNTRL);
P9080_EEPROMDelay(hPlx);
dwCNTRL &= ~BIT24;
P9080_WriteReg( hPlx, P9080_CNTRL, dwCNTRL);
P9080_EEPROMDelay(hPlx);
fRet = (P9080_ReadReg( hPlx, P9080_CNTRL) & BIT27)==BIT27;
return fRet;
}
void P9080_EEPROMWriteEnableDisable(P9080_HANDLE hPlx, BOOL fEnable)
{
P9080_EEPROMChipSelect(hPlx, TRUE);
// send a WEN instruction
P9080_EEPROMWriteBit(hPlx, 1);
P9080_EEPROMWriteBit(hPlx, 0);
P9080_EEPROMWriteBit(hPlx, 0);
P9080_EEPROMWriteBit(hPlx, fEnable ? 1 : 0);
P9080_EEPROMWriteBit(hPlx, fEnable ? 1 : 0);
P9080_EEPROMWriteBit(hPlx, 0);
P9080_EEPROMWriteBit(hPlx, 0);
P9080_EEPROMWriteBit(hPlx, 0);
P9080_EEPROMWriteBit(hPlx, 0);
P9080_EEPROMChipSelect(hPlx, FALSE);
}
BOOL P9080_EEPROMReadWord(P9080_HANDLE hPlx, DWORD dwOffset, PWORD pwData)
{
DWORD dwAddr = dwOffset >> 1;
DWORD i;
*pwData = 0;
P9080_EEPROMChipSelect(hPlx, TRUE);
P9080_EEPROMWriteBit(hPlx, 1);
P9080_EEPROMWriteBit(hPlx, 1);
P9080_EEPROMWriteBit(hPlx, 0);
// if it's a CS46 EEPROM send only 5 bit address
for ( i = hPlx->fUseCS46EEPROM ? BIT5 : BIT7; i; i = i>>1)
{
P9080_EEPROMWriteBit(hPlx, (dwAddr & i) == i);
}
for (i=BIT15; i; i = i>>1)
{
*pwData |= P9080_EEPROMReadBit(hPlx) ? i : 0;
}
P9080_EEPROMWriteEnableDisable(hPlx, FALSE);
return TRUE;
}
BOOL P9080_EEPROMWriteWord(P9080_HANDLE hPlx, DWORD dwOffset, WORD wData)
{
DWORD dwAddr = dwOffset >> 1;
DWORD i;
WORD readback;
P9080_EEPROMWriteEnableDisable(hPlx, TRUE);
P9080_EEPROMChipSelect(hPlx, TRUE);
// send a PRWRITE instruction
P9080_EEPROMWriteBit(hPlx, 1);
P9080_EEPROMWriteBit(hPlx, 0);
P9080_EEPROMWriteBit(hPlx, 1);
// if it's a CS46 EEPROM send only a 6 bit address
for ( i = hPlx->fUseCS46EEPROM ? BIT5 : BIT7; i; i = i>>1)
{
P9080_EEPROMWriteBit(hPlx, (dwAddr & i) == i);
}
for (i=BIT15; i; i = i>>1)
{
P9080_EEPROMWriteBit(hPlx, (wData & i) == i);
}
P9080_EEPROMChipSelect(hPlx, FALSE);
P9080_EEPROMWriteEnableDisable(hPlx, FALSE);
if (P9080_EEPROMReadWord(hPlx, dwOffset, &readback))
{
if (wData != readback)
{
sprintf( P9080_ErrorString, "Write 0x%04x, Read 0x%04x\n", wData, readback);
return FALSE;
}
}
else
return FALSE;
return TRUE;
}
BOOL P9080_EEPROMReadDWord(P9080_HANDLE hPlx, DWORD dwOffset, PDWORD pdwData)
{
WORD wData1, wData2;
if (dwOffset % 4)
{
sprintf( P9080_ErrorString, "The offset is not a multiple of 4\n");
return FALSE;
}
if (!P9080_EEPROMReadWord(hPlx, dwOffset, &wData1))
return FALSE;
if (!P9080_EEPROMReadWord(hPlx, dwOffset+2, &wData2))
return FALSE;
*pdwData = (DWORD) ((wData1 << 16) + wData2);
return TRUE;
}
BOOL P9080_EEPROMWriteDWord(P9080_HANDLE hPlx, DWORD dwOffset, DWORD dwData)
{
WORD wData1, wData2;
if (dwOffset % 4)
{
sprintf( P9080_ErrorString, "The offset is not a multiple of 4\n");
return FALSE;
}
wData1 = (WORD) (dwData >> 16);
wData2 = (WORD) (dwData & 0xffff);
if (!P9080_EEPROMWriteWord(hPlx, dwOffset, wData1))
return FALSE;
if (!P9080_EEPROMWriteWord(hPlx, dwOffset+2, wData2))
return FALSE;
return TRUE;
}